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Spectral statistics of instantaneous normal modes in liquids and random matrices
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We study the statistical properties of eigenvalues of the Hessian matrixH ~matrix of second derivatives of
the potential energy! for a classical atomic liquid, and compare these properties with predictions for random
matrix models. The eigenvalue spectra~the instantaneous normal mode or INM spectra! are evaluated numeri-
cally for configurations generated by molecular dynamics simulations. We find that distribution of spacings
between nearest-neighbor eigenvalues,s, obeys quite well the Wigner predictions exp(2s2), with the agree-
ment being better for higher densities at fixed temperature. The deviations display a correlation with the
number of localized eigenstates~normal modes! in the liquid; there are fewer localized states at higher
densities that we quantify by calculating the participation ratios of the normal modes. We confirm this obser-
vation by calculating the spacing distribution for parts of the INM spectra with high participation ratios,
obtaining greater conformity with the Wigner form. We also calculate the spectral rigidity and find a substan-
tial dependence on the density of the liquid.
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I. INTRODUCTION

The local topography of the potential energy surface,
characterized by the ensemble averaged spectrum@instanta-
neous normal mode~INM ! spectrum# of eigenvalues of the
second-derivative matrix~Hessian! of the potential energy
function, have been studied in recent years as an approa
the analysis of dynamics in liquids@1,2#. Broadly, the study
of the INM spectra has been directed at analyzing short-t
dynamics as in studying solvation@3#, and at elucidating in-
formation about pathways to long-time relaxation in the fo
of potential energy barriers, etc.@1,2#.

Considerable effort has also been dedicated to develo
analytical theories for calculating the INM spectra within
equilibrium description@4–8#. The approach in much o
these attempts has been to formulate the problem of ca
lating the INM spectrum as an exercise in random-ma
theory. If one treats the individual elements of the Hess
matrix as independent, and distributed according to the
propriate Boltzmann weight, then the Hessian may
viewed as a real, symmetric-random matrix with a kno
distribution of matrix elements. Two properties, howev
distinguish the Hessian from the standard corresponding
treated in random-matrix theory:~i! The diagonal entries o
the Hessian are related to the off-diagonal entries by
property H i i

ab52( j Þ iH i j
ab , where i , j label the particles

and a,b the spatial coordinatesx,y,z. ~ii ! For liquids with
short-ranged interaction potentials, the Hessian matrix
sparse, with the fraction of nonzero entriesp depending on
the system size asp;1/N.

In view of the above considerations, it is of interest
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inquire to what extent the INM spectrum displays univer
features identified in random-matrix theory. In this paper,
address this question by obtaining INM spectra numerica
for a model atomic liquid that has been studied in the cont
of slow dynamics in supercooled liquids@9,10#. The statistics
we consider are the spacing statistics between nea
neighbor eigenvalues and the spectral rigidity, which we
plain below.

II. EIGENVALUES OF THE HESSIAN

The model liquid we study is a binary mixture@9# com-
posed of 80% of particles of typeA and 20% of typeB,
interacting via the Lennard-Jones potential, with Lenna
Jones parameterseAB /eAA51.5, eBB /eAA50.5, sAB /sAA
50.8, andsBB /sAA50.88, and a ratio of massesmB /mA
51. Lennard-Jones reduced units are used to report all
quantities, in terms of theA-particle parameterseAA , sAA ,
and mA : temperatures asT* 5kBT/eAA , densities asr*
5r/sAA

3 and Hessian eigenvaluesl* 5lmAsAA
2 /eAA . Fur-

ther details may be found in@10#. Molecular dynamics simu-
lations of the liquid are performed at ten reduced densi
r* from r* 50.65 to 1.40, at reduced temperatureT* 51.0.
Two hundred sample configurations in each case are ch
from the equilibrated trajectory for the INM analysis. F
each of these configurations, the Hessian is calculated
diagonalized numerically to obtain the eigenvaluesl i as well
as the eigenvectorsei . The eigenvectors are used to calcula
the localization properties of the normal modes, via the p
ticipation ratio

Pi5FN (
a51

3N

~ei
a
•ei

a!2G21

. ~2.1!

The participation ratio thus defined is small~order of 1/N!
for localized modes and large~order of 1) for extended
modes.
©2001 The American Physical Society05-1
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By constructing the histogram of eigenvaluesl of the
Hessian for all configurations considered, we obtain the IN
density of states~DOS! or spectrum@11#. Figure 1 shows the
INM spectrumD(l) versesl for different densities. Note
that the DOS is very different from the Wigner semicirc
distribution, obtained in random-matrix models~RMM!. We
know from the literature@13# that the correlation and spacin
functions are universal in certain regions no matter what
DOS is. Thus we use the corresponding statistics of spac
between eigenvalues, Wigner-Dyson statistics, as the s
dard of reference.

III. UNFOLDING THE SPECTRUM

The statistical analysis of the numerical data proceeds
first using anunfolding procedure. The numerical calculation
yields the eigenvalues of the Hessian that is ordered
forms the sample spectrum$l1 ,l2 , . . . ,ln%. In order to
analyze the spacing statistics, one must transform the ei
valuesl i in such a way that the transformed eigenvaluesz i
are uniformly distributed. That is, the spectral densityD(z)
51. This procedure is referred to as ‘‘unfolding’’ the spe
trum @14,12#. In general such a transformation for a spect
density functionD(l) is most easily accomplished throug
its cumulative distribution

C~l![E
2`

l

D~l!dl ~3.1!

by definingz(l)5C(l). For a discrete spectrum such as t
ones we consider here, the corresponding procedure w
be to extract from the sample spectrum the ‘‘smooth’’ part
the ‘‘staircase’’ cumulative distribution@12#. In this work,
the procedure we adopt to estimate the smooth part of
cumulative distribution is to evaluate the cumulative dis
bution for the union of all eigenvaluesl i obtained for 200
independent configurations at each density and tempera
value. Such a smooth cumulative spectrum along with

FIG. 1. INM density of states shown for three densities. In
shows the DOS on a logarithmic scale. Eigenvaluesl are expressed
in units of eAA /mAsAA

2 , andD(l) in units of mAsAA
2 /eAA .
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‘‘staircase’’ cumulative spectrum for a single configuratio
is shown in Fig. 2 and the unfolding procedure is indicat

IV. SPACING DISTRIBUTION

The spacing distributionP(s) for the random-matrix
models is defined as the probability of finding the ne
nearest-neighbor eigenvalue of the spectrum to be at a
tances, i.e. si5(l i 112l i)/D, whereD is the mean-level
spacing. In the present case, where we use unfolded ei

values, si5z i 112z i . Then P(s)5Asbe2Bs2
where b51

for the orthogonal random matrix model, which is th
‘‘Wigner surmise’’ @14#. This spacing distribution arises i
various quantum systems that show an underlying classic
chaotic behavior, e.g., quantum billiards, quantum do
nuclear spectra, and disordered mesoscopic systems.
system we analyze, on the other hand, is a classical liq
with a disordered-microscopic structure. The spacing dis
butions obtained are shown in Fig. 3 for three densities of
liquid. We find that to a first approximation, the cases co
sidered display the universal behavior according to
Wigner surmise, with the agreement being better for the
uid at higher densities. We note here that in Ref.@8# a sparse-
random matrix is used to calculate the INM DOS analytica
for a one-dimensional system that is very different from t
usual Wigner semicircle and displays qualitative featu
very similar to the DOS we calculate numerically here.
would be very interesting to see whether the correlators
the sparse random matrix proposed in Ref.@8# capture the
above behavior for different densities for the liquid.

t
FIG. 2. A portion of the staircase cumulative spectrum from

single configuration is shown along with the estimate of the smo
part of the cumulative distribution obtained from combining eige
values from 200 configurations, for densityr* 51.0 and tempera-
tureT* 51.0. The arrows indicate the mapping of any given eige
value l i to the unfolded eigenvaluez i . The inset shows the
cumulative spectra for the full range. Eigenvaluesl are expressed
in units of eAA /mAsAA

2 , and cumulative probabilitiesz are dimen-
sionless.
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V. SPECTRAL RIGIDITY

We next study the spectral rigidity, which measures
fluctuations of the number of eigenvalues in a window
given size as a function of the size of the window~or equiva-
lently, the average number of eigenvalues expected in
window!. The number fluctuations are plotted as a funct
of the mean number of eigenvalues in Fig. 4 for the sa
three densities as in the preceding figures. For the case o
Poisson spectrum and the harmonic oscillator@14# the num-
ber fluctuations arêdN2&;^N& and ^dN2&5const, while
for the Gaussian random matrix ensembles^dN2&; ln^N&
for N@1.

The number fluctuations are of the form̂dN2&;Ng

whereg(r) depends on the liquid’s density. This situation

FIG. 3. The level-spacing distributionP(s) for densitiesr
50.65, 1.0, and 1.35. Level spacingss are expressed in units o
eAA /mAsAA

2 , andP(s) in units of mAsAA
2 /eAA .

FIG. 4. Spectral rigidity: Lines are fits to the form̂N2&
2^N&2;^N&g, and the values ofg are 1.036, 0.85, and 0.765
respectively, forr* 50.65, 1.00, and 1.35.
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reminiscent of that found for the mobility edge in th
quantum-hall effect and in the Anderson metal-insula
transition. A detailed analysis of this awaits future work.

VI. PARTICIPATION RATIO

In order to get some insight into the reason for the s
tematically better agreement with increasing density of
spacing distribution, we consider the localization propert
of the normal modes in the liquid. In the standard rand
matrix case for orthogonal matrices, the eigenvectors are
extended, while from previous numerical and analytical st
ies we know that a fraction of the INM eigenmodes are
calized. As described earlier, we use the participation ratio
quantify the localization of modes, averaging over mod
corresponding to eigenvalues in each histogram bin, for

FIG. 5. Participation ratio as a function of unfolded eigenvalu
z ~see caption of Fig. 2!.

FIG. 6. The level-spacing distribution shown forr* 51.35 for
the full eigenvalue spectrum~open rhombs!, for the range of eigen-
values with high participation ratio~0.75! ~filled rhombus!, along
with the RMM prediction. Level spacingss are expressed in units o
eAA /mAsAA

2 , andP(s) in units of mAsAA
2 /eAA .
5-3
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unfolded eigenvalues. In Fig. 5, the participation ratio
plotted as a function of the unfolded eigenvalues forT*
51.00, for values of the densityr* 50.65, 1.00, and 1.35
One notes that for the highest densityr51.35 the participa-
tion ratios are highest overall, while for the lower densit
the participation ratios are quite small for a substantial fr
tion of the eigenmodes, indicating a large number of loc
ized modes.

Next, we calculate the spacing distribution forr* 51.35
for unfolded eigenvalues between 0.1 and 0.6 for which
participation ratio is high (.0.75) and relatively unchangin
~Fig. 5!. The resulting spacing distribution is shown in Fi
6, along with the spacing distribution for the entire eige
value spectrum and the expectation based on the RMM
sult. The data shown clearly demonstrate that the spa
distribution is practically identical to the standard RMM r
sult, confirming the speculation that the increasing fract
of localized states at lower densities are responsible for
deviations at these densities from the standard RMM res
Indeed, this observation has been used, in a different con
to locate the mobility edge in disordered systems@20#.
th

s.
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VII. CONCLUSIONS

We have presented the spacing statistics and spectra
gidity for numerically calculated INM spectra. The spacin
statistics is seen to conform better with increasing density~at
fixed temperature!, with the predictions for random-matrix
models. We demonstrate that the source of deviations f
RMM predictions is related to the presence of localized
stantaneous normal modes in the liquid whose numbe
greater for lower density. As the two features distinguish
the INM spectra from the standard random matrix case
the nature of the diagonal elements and the sparseness o
Hessian matrix@15–19#, further understanding of the non
universality of the INM spectra are to be sought in the ma
ner in which these aspects affect the INM spectral statist
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