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Spectral statistics of instantaneous normal modes in liquids and random matrices
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We study the statistical properties of eigenvalues of the Hessian niétfiratrix of second derivatives of
the potential energyfor a classical atomic liquid, and compare these properties with predictions for random
matrix models. The eigenvalue spediifae instantaneous normal mode or INM specé@ evaluated numeri-
cally for configurations generated by molecular dynamics simulations. We find that distribution of spacings
between nearest-neighbor eigenvaliesbeys quite well the Wigner predictiexp(—<), with the agree-
ment being better for higher densities at fixed temperature. The deviations display a correlation with the
number of localized eigenstatéaormal modek in the liquid; there are fewer localized states at higher
densities that we quantify by calculating the participation ratios of the normal modes. We confirm this obser-
vation by calculating the spacing distribution for parts of the INM spectra with high participation ratios,
obtaining greater conformity with the Wigner form. We also calculate the spectral rigidity and find a substan-
tial dependence on the density of the liquid.
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[. INTRODUCTION inquire to what extent the INM spectrum displays universal
features identified in random-matrix theory. In this paper, we
The local topography of the potential energy surface, agddress this question by obtaining INM spectra numerically
characterized by the ensemble averaged spediimstanta- for a model atqmig liquid that has _bee;n studied in the:\ context
neous normal modédNM) spectrur of eigenvalues of the ©f slow dynamics in supercooled Imwﬁ%lO]. The statistics
second-derivative matrixHessian of the potential energy W€ COﬂSId_er are the spacing StatIStI(.:S' petwegn nearest-
function, have been studied in recent years as an approach &§ighbor eigenvalues and the spectral rigidity, which we ex-
the analysis of dynamics in liquid4,2]. Broadly, the study Plain below.
of the INM spectra has been directed at analyzing short-time
dynamics as in studying solvatigB], and at elucidating in-
formation about pathways to long-time relaxation in the form  The model liquid we study is a binary mixtuf8] com-
of potential energy barriers, etic,2). posed of 80% of particles of typ& and 20% of typeB,
Considerable effort has also been dedicated to developinig.teractmg via the Lennard-Jones potential, with Lennard-
analytical theories for calculating the INM spectra within an jones parametersag/ean=1.5, €pg/ean=0.5, oag/oan
equilibrium description[4-8]. The approach in much of =g, andogg/oan=0.88, and a ratio of massesg/mx
these attempts has been to formulate the problem of calcu= 1 | ennard-Jones reduced units are used to report all the
lating the INM spectrum as an exercise in random—mat.rixquamities, in terms of thA-particle parametersys, oan,
theory. If one treats the individual elements of the Hessiayng m,: temperatures ad* =kgT/ean, densities asp*
matrix as independent, and distributed according to the ap= /53 and Hessian eigenvalues = \muo2 /ean. Fur-
propriate Boltzmann weight, then the Hessian may bgner details may be found {i10]. Molecular dynamics simu-

viewed as a real, symmetric-random matrix with & known|siions of the liquid are performed at ten reduced densities
distribution of matrix elements. Two properties, however, x fom p* =0.65 to 1.40, at reduced temperatdre=1.0.

distinguish the Hessian from the standard corresponding casg,q hundred sample configurations in each case are chosen
treated in random-matrix theorfi) The diagonal entries of fom the equilibrated trajectory for the INM analysis. For
the Hessmnﬁare relatedﬁto the off-diagonal entries by the,ch of these configurations, the Hessian is calculated and
property "= —2;.Hjj”, wherei,j label the particles  giagonalized numerically to obtain the eigenvaliess well

and «, 8 the spatial coordinates,y,z. (ii) For liquids with a5 the eigenvectors. The eigenvectors are used to calculate

short-ranged interaction potentials, the Hessian matrix ighe |ocalization properties of the normal modes, via the par-
sparse, with the fraction of nonzero entrigsiepending on jcipation ratio

the system size gs~ 1/N.

Il. EIGENVALUES OF THE HESSIAN

In view of the above considerations, it is of interest to N o a2 -t
Pi=|N2 (e¢) 2.
*Email address: sastry@jncasr.ac.in The participation ratio thus defined is smédrder of 1N)
"Email address: ndeo@vsnl.net for localized modes and largéorder of 1) for extended
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FIG. 1. INM density of states shown for three densities. Inset
shows the DOS on a logarithmic scale. Eigenvaluese expressed
in units of exa/Ma0an, andD(N) in units of MAcA A/ €an -

FIG. 2. A portion of the staircase cumulative spectrum from a
single configuration is shown along with the estimate of the smooth
part of the cumulative distribution obtained from combining eigen-

) ) ) values from 200 configurations, for denspy =1.0 and tempera-
By constructing the histogram of eigenvaluesof the a1+ =10 The arrows indicate the mapping of any given eigen-
Hessian for all configurations considered, we obtain the INMzue \, to the unfolded eigenvalug,. The inset shows the

density of state¢DOS) or spectrun11]. Figure 1 shows the  cymulative spectra for the full range. Eigenvaluesre expressed
INM spectrumD(N\) verses\ for different densities. Note in units of exa/maca,, and cumulative probabilities are dimen-
that the DOS is very different from the Wigner semicircle sjonless.

distribution, obtained in random-matrix modéRMM). We
know from the literatur¢13] that the correlation and spacing |,
functions are universal in certain regions no matter what the
DOS is. Thus we use the corresponding statistics of spacind§
between eigenvalues, Wigner-Dyson statistics, as the stan-
dard of reference.

staircase” cumulative spectrum for a single configuration
shown in Fig. 2 and the unfolding procedure is indicated.

IV. SPACING DISTRIBUTION

lll. UNFOLDING THE SPECTRUM The spacing distributionP(s) for the random-matrix

The statistical analysis of the numerical data proceeds b odels is _defmed as the probability of finding the nextf
first using arunfolding procedureThe numerical calculation N€arest-neighbor eigenvalue of the spectrum to be at a dis-
yields the eigenvalues of the Hessian that is ordered anfNces, i-e. Si=(Ai;1—\)/A, whereA is the mean-level
forms the sample spectruffh;,\,, ... \,}. In order to ~ SPacing. In the present case, where we use unfolded eigen-
analyze the spacing statistics, one must transform the eigenalues,s;={¢;.1—¢;. Then P(s)=Asﬁe‘E‘52 where g=1
values\; in such a way that the transformed eigenvalges for the orthogonal random matrix model, which is the
are uniformly distributed. That is, the spectral den&it{) “Wigner surmise” [14]. This spacing distribution arises in
=1. This procedure is referred to as “unfolding” the spec- various quantum systems that show an underlying classically
trum[14,12. In general such a transformation for a spectralchaotic behavior, e.g., quantum billiards, quantum dots,
density functionD () is most easily accomplished through nuclear spectra, and disordered mesoscopic systems. The
its cumulative distribution system we analyze, on the other hand, is a classical liquid,
with a disordered-microscopic structure. The spacing distri-
butions obtained are shown in Fig. 3 for three densities of the
liquid. We find that to a first approximation, the cases con-
sidered display the universal behavior according to the
by definingZ(\)=C(\). For a discrete spectrum such as theWigner surmise, with the agreement being better for the lig-
ones we consider here, the corresponding procedure wouldid at higher densities. We note here that in R&f a sparse-
be to extract from the sample spectrum the “smooth” part ofrandom matrix is used to calculate the INM DOS analytically
the “staircase” cumulative distributiof12]. In this work, for a one-dimensional system that is very different from the
the procedure we adopt to estimate the smooth part of thesual Wigner semicircle and displays qualitative features
cumulative distribution is to evaluate the cumulative distri-very similar to the DOS we calculate numerically here. It
bution for the union of all eigenvalues obtained for 200 would be very interesting to see whether the correlators of
independent configurations at each density and temperatutee sparse random matrix proposed in Ré&f. capture the
value. Such a smooth cumulative spectrum along with th@bove behavior for different densities for the liquid.

A
C(A)s_f_wo(x)dx (3.)
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FIG. 3. The level-spacing distributio®(s) for densitiesp FIG. 5. Participation ratio as a function of unfolded eigenvalues

=0.65, 1.0, and 1.35. Level spacingsare expressed in units of + (see caption of Fig. )2
ean/Mpca s, andP(s) in units of Maoa o/ €an -
reminiscent of that found for the mobility edge in the
V. SPECTRAL RIGIDITY quantum-hall effect and in the Anderson metal-insulator
- . transition. A detailed analysis of this awaits future work.
We next study the spectral rigidity, which measures the 4
fluctuations of the number of eigenvalues in a window of
given size as a function of the size of the wind@w equiva-
lently, the average number of eigenvalues expected in the |, o qer 1o get some insight into the reason for the sys-
W#”ﬂow)' The numbber f]Icuc_tuanonls are plopted afs ar]:uncnontematically better agreement with increasing density of the
of the mean number of eigenvalues in Fig. 4 for the samey,qing distribution, we consider the localization properties
three densities as in the preceding figures. For the case of tg the normal modes in the liquid. In the standard random
P0|sfs|on spgctrum and 'éhe harmonic osglléﬂmﬂ the nL;]nr matrix case for orthogonal matrices, the eigenvectors are all
ber fluctuations arg6N)~(N) and (6N >—c02nst, Wwhile extended, while from previous numerical and analytical stud-
for the Gaussian random matrix ensemb(é®“)~In(N) o5 we know that a fraction of the INM eigenmodes are lo-
for N>1. ) 5 y calized. As described earlier, we use the participation ratio to
The number fluctuations are of the forfN“)~N” 4 antify the localization of modes, averaging over modes
wherey(p) depends on the liquid's density. This situation is corresponding to eigenvalues in each histogram bin, for the

VI. PARTICIPATION RATIO
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FIG. 6. The level-spacing distribution shown fpf =1.35 for

N
e the full eigenvalue spectrufopen rhomby for the range of eigen-

FIG. 4. Spectral rigidity: Lines are fits to the forgiN?) values with high participation rati€0.75 (filled rhombus, along
—(N)2~(N)?, and the values ofy are 1.036, 0.85, and 0.765, with the RMM prediction. Level spacingsare expressed in units of
respectively, forp* =0.65, 1.00, and 1.35. ean/Macan, andP(s) in units of Maoa \/ €an -
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unfolded eigenvalues. In Fig. 5, the participation ratio is VIl. CONCLUSIONS

plotted as a function of the unfolded eigenvalues Tdr We have presented the spacing statistics and spectral ri-
=1.00, for values of the densify" =0.65, 1.00, and 1.35. gigity for numerically calculated INM spectra. The spacing
One notes that for the highest density 1.35 the participa-  statistics is seen to conform better with increasing deraity
tion ratios are highest overall, while for the lower densitiesfixed temperature with the predictions for random-matrix
the participation ratios are quite small for a substantial fracmodels. We demonstrate that the source of deviations from
tion of the eigenmodes, indicating a large number of local-RMM predictions is related to the presence of localized in-
ized modes. stantaneous normal modes in the liquid whose number is
Next, we calculate the spacing distribution @t =1.35  greater for lower density. As the two features distinguishing
for unfolded eigenvalues between 0.1 and 0.6 for which théhe INM spectra from the standard random matrix case are
participation ratio is high¥0.75) and relatively unchanging the nature of the diagonal elements and the sparseness of the
(Fig. 5). The resulting spacing distribution is shown in Fig. Hessian matri15-19, further understanding of the non-
6, along with the spacing distribution for the entire eigen-universality of the INM spectra are to be sought in the man-
value spectrum and the expectation based on the RMM rel€r in which these aspects affect the INM spectral statistics.
sult. The data shown clearly demonstrate that the spacing
distribution is practically identical to the standard RMM re-
sult, confirming the speculation that the increasing fraction We would like to thank S. Jain, V. E. Kravtsov, A. Cavag-
of localized states at lower densities are responsible for thea, I. Giardina, P. J. Garrahan, and P. Carpena for very use-
deviations at these densities from the standard RMM resulful discussions during the course of this work. S.F. thanks
Indeed, this observation has been used, in a different contette Jawaharlal Nehru Center for Advanced Scientific Re-
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